Intelligent programmable metasurface for vibration field sensing and electromagnetic reflection modulation

Author:

Zhou Wu Wei1ORCID,Ye Fu Ju1ORCID,Li Xiao Qi1ORCID,Cui Hao Yang1ORCID,Chen Lei1ORCID

Affiliation:

1. College of Electronics and Information Engineering, Shanghai University of Electric Power , Shanghai 200090, China

Abstract

While existing research has explored control strategies in multi-dimensional fields, the interconnectedness between electromagnetic and vibrational fields remains relatively uncharted. To explore this intersection and harness its potential, we propose an intelligent programmable metasurface that modulates electromagnetic fields based on vibration intensity information. This paper introduces a groundbreaking approach that synergizes the physical fields of mechanical (vibrational) waves with electromagnetic waves, facilitating the detection and manipulation of information from both fields. By combining a programmable metasurface, vibration sensors, and microcontroller units, we have achieved regulation of the electromagnetic field through utilization of vibration intensity information. In this work, we have introduced six coding patterns that facilitate dual-beam scanning with variable deflection angles. A 20 × 20 metasurface is fabricated and measured, and the measured results are in good agreement with the simulated results. This research opens a new avenue for manipulating electromagnetic waves. Furthermore, the findings have the potential to impact a wide range of fields, including building structuralhealth monitoring, industrial production, mechanical equipment monitoring, and earthquake monitoring.

Funder

National Key Research and Development Program of National Natural Science Foundation of China

SHIEP Foundation

Local Colleges and Universities Capacity Building Program of the Shanghai Science and Technology Committee

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3