Effective passivation of p- and n-type In0.53Ga0.47As in achieving low leakage current, low interfacial traps, and low border traps

Author:

Lin Y. H. G.1ORCID,Wan H. W.1ORCID,Young L. B.1ORCID,Lai K. H.1ORCID,Liu J.2ORCID,Cheng Y. T.1ORCID,Kwo J.3ORCID,Hong M.12ORCID

Affiliation:

1. Graduate Institute of Applied Physics and Department of Physics, National Taiwan University 1 , Taipei, Taiwan

2. Graduate Institute of Electronics Engineering, National Taiwan University 2 , Taipei, Taiwan

3. Department of Physics, National Tsing Hua University 3 , Hsinchu, Taiwan

Abstract

We have attained low leakage current, low interfacial traps, and low border traps by effectively passivating both p- and n-In0.53Ga0.47As (InGaAs) surfaces using the same gate dielectrics of ultra-high-vacuum deposited Al2O3/Y2O3. Gate leakage currents below 2 × 10−7 A/cm2 at gate fields of ±4 MV/cm were obtained after 800 °C rapid thermal annealing, demonstrating the intactness of the interface and heterostructure. Negligibly small frequency dispersions in the capacitance–voltage (C–V) characteristics of p- and n-type metal-oxide-semiconductor capacitors (MOSCAPs) were obtained from accumulation, flatband, to depletion as measured from 300 K to 77 K, indicative of low border and interfacial trap density; the C–V frequency dispersions in the accumulation region are 1.5%/dec (300 K) and 0.19%/dec (77 K) for p-InGaAs, and 2.2%/dec (300 K) and 0.97%/dec (77 K) for n-InGaAs. Very low interfacial trap densities (Dit's) of (1.7–3.2) × 1011 eV−1cm−2 and (6.7–8.5) × 1010 eV−1cm−2, as extracted from the conductance method, were achieved on p- and n-InGaAs MOSCAPs, respectively.

Funder

Ministry of Science and Technology, Taiwan

National Science and Technology Council

Ministry of Education, Taiwan

Taiwan Semiconductor Research Institute

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3