Affiliation:
1. The School of Mechanical Engineering and Automation, Harbin Institute of Technology 1 , Shenzhen, China
2. The Department of Energy Technology, Aalborg University 2 , Aalborg, Denmark
Abstract
Recently, the large-scale integration of power electronic-based renewable energy power plants has changed the operation and response mechanism of the power system, resulting in several emerging oscillation issues that have seriously been threatening the system's stability. It helps us to recognize the similarities and differences among the triggering causes and formation mechanisms of oscillation scenarios. Following several typical oscillation events in the real world and the timescale decomposition method, this paper comprehensively reviews the wide-bandwidth oscillation study from the aspects of the analysis methods, possible cause, mechanism, and mitigation solution. The paper provides a perspective to classify the oscillations in the modern power systems on the basis of the oscillation frequency and the main oscillation module. This classification framework involves not only emerging oscillations in the power system with large-scale renewable energy sources integration but also includes typical oscillations in traditional power systems. It also systematically presents the relative relationship, development process, and inner influence between emerging oscillations and typical oscillations. Based on this review, the future research is suggested to focus on the relationship between different analytical methods or oscillation mechanisms, as well as the stability risk assessment of hybrid alternating current and direct current power systems.
Funder
Shenzhen Fundamental Research Program
Science and Technology Planning Project of Shenzhen Municipality
Subject
Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献