Influence of network defects on the conformational structure of nanogel particles: From “closed compact” to “open fractal” nanogel particles

Author:

Chremos Alexandros1ORCID,Horkay Ferenc1ORCID,Douglas Jack F.2ORCID

Affiliation:

1. Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA

2. Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

Abstract

We propose an approach to generate a wide range of randomly branched polymeric structures to gain general insights into how polymer topology encodes a configurational structure in solution. Nanogel particles can take forms ranging from relatively symmetric sponge-like compact structures to relatively anisotropic open fractal structures observed in some nanogel clusters and in some self-associating polymers in solutions, such as aggrecan solutions under physiologically relevant conditions. We hypothesize that this broad “spectrum” of branched polymer structures derives from the degree of regularity of bonding in the network defining these structures. Accordingly, we systematically introduce bonding defects in an initially perfect network having a lattice structure in three and two topological dimensions corresponding to “sponge” and “sheet” structures, respectively. The introduction of bonding defects causes these “closed” and relatively compact nanogel particles to transform near a well-defined bond percolation threshold into “open” fractal objects with the inherent anisotropy of randomly branched polymers. Moreover, with increasing network decimation, the network structure of these polymers acquires other configurational properties similar to those of randomly branched polymers. In particular, the mass scaling of the radius of gyration and its eigenvalues, as well as hydrodynamic radius, intrinsic viscosity, and form factor for scattering, all undergo abrupt changes that accompany these topological transitions. Our findings support the idea that randomly branched polymers can be considered to be equivalent to perforated sheets from a “universality class” standpoint. We utilize our model to gain insight into scattering measurements made on aggrecan solutions.

Funder

National Institutes of Health

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3