Hypochaos prevents tragedy of the commons in discrete-time eco-evolutionary game dynamics

Author:

Sohel Mondal Samrat1ORCID,Ray Avishuman2ORCID,Chakraborty Sagar1ORCID

Affiliation:

1. Department of Physics, Indian Institute of Technology Kanpur 1 , Uttar Pradesh 208016, India

2. Department of Physics and Astronomy, University of Southern California 2 , Los Angeles, California 90089, USA

Abstract

While quite a few recent papers have explored game-resource feedback using the framework of evolutionary game theory, almost all the studies are confined to using time-continuous dynamical equations. Moreover, in such literature, the effect of ubiquitous chaos in the resulting eco-evolutionary dynamics is rather missing. Here, we present a deterministic eco-evolutionary discrete-time dynamics in generation-wise non-overlapping population of two types of harvesters—one harvesting at a faster rate than the other—consuming a self-renewing resource capable of showing chaotic dynamics. In the light of our finding that sometimes chaos is confined exclusively to either the dynamics of the resource or that of the consumer fractions, an interesting scenario is realized: The resource state can keep oscillating chaotically, and hence, it does not vanish to result in the tragedy of the commons—extinction of the resource due to selfish indiscriminate exploitation—and yet the consumer population, whose dynamics depends directly on the state of the resource, may end up being composed exclusively of defectors, i.e., high harvesters. This appears non-intuitive because it is well known that prevention of tragedy of the commons usually requires substantial cooperation to be present.

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

Reference64 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. STP-based control of networked evolutionary games with multi-channel structure;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3