Machine-learning flow control with few sensor feedback and measurement noise

Author:

Castellanos R.12ORCID,Cornejo Maceda G. Y.3ORCID,de la Fuente I.1ORCID,Noack B. R.34ORCID,Ianiro A.1ORCID,Discetti S.1ORCID

Affiliation:

1. Aerospace Engineering Research Group, Universidad Carlos III de Madrid, Leganés 28911, Spain

2. Theoretical and Computational Aerodynamics Branch, Flight Physics Department, Spanish National Institute for Aerospace Technology (INTA), Torrejón de Ardoz 28850, Spain

3. School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), University Town, Xili, Shenzhen 518055, People's Republic of China

4. Institut für Strömungsmechanik und Technische Akustik (ISTA), Technische Universität Berlin, Müller-Breslau-Straße 8, D-10623 Berlin, Germany

Abstract

A comparative assessment of machine-learning (ML) methods for active flow control is performed. The chosen benchmark problem is the drag reduction of a two-dimensional Kármán vortex street past a circular cylinder at a low Reynolds number ( Re =  100). The flow is manipulated with two blowing/suction actuators on the upper and lower side of a cylinder. The feedback employs several velocity sensors. Two probe configurations are evaluated: 5 and 11 velocity probes located at different points around the cylinder and in the wake. The control laws are optimized with Deep Reinforcement Learning (DRL) and Linear Genetic Programming Control (LGPC). By interacting with the unsteady wake, both methods successfully stabilize the vortex alley and effectively reduce drag while using small mass flow rates for the actuation. DRL has shown higher robustness with respect to different initial conditions and to noise contamination of the sensor data; on the other hand, LGPC is able to identify compact and interpretable control laws, which only use a subset of sensors, thus allowing for the reduction of the system complexity with reasonably good results. Our study points at directions of future machine-learning control combining desirable features of different approaches.

Funder

Fundación BBVA

Natural Science & Engineeering grant of the Guangdong province, China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3