Anti-phase oscillations of an elliptical cavitation vortex in Francis turbine draft tube

Author:

Favrel Arthur12ORCID,Liu Zhihao3,Khozaei Mohammad Hossein3,Irie Tatsuya3,Miyagawa Kazuyoshi3

Affiliation:

1. Hydro-Québec Research Institute (IREQ), Hydro-Québec, Varennes, Quebec, Canada

2. Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan

3. Department of Applied Mechanics and Aerospace Engineering, Waseda University, Tokyo, Japan

Abstract

In this paper, the dynamic behavior of a precessing cavitation vortex featuring an elliptical cross section in Francis turbine draft tube is investigated. This phenomenon may occur for values of discharge coefficient within 70%–85% of the discharge coefficient at the best efficiency point, for which Francis turbines can experience the onset of the so-called upper-part load (UPL) instability. The latter is characterized by the propagation of high-amplitude synchronous pressure fluctuations through the complete hydraulic circuit. High-speed visualizations of the cavitation vortex are performed on a Francis turbine model by means of two cameras synchronized with pressure sensors arranged along the draft tube for different Thoma numbers at a given discharge coefficient. A simplified analytical model of the cavitation vortex is proposed. It enables the interpretation of the video post-processing results in the frequency domain and the estimation of both the vortex cross section dimensions and their oscillations with time. It is first demonstrated that both the vortex cross section ellipticity (given by the ratio between its semi-major and semi-minor axes) and the amplitude of its oscillations are directly correlated with the amplitude of UPL pressure fluctuations during intermittent UPL instability. Furthermore, the evolution along the draft tube of the dimensions of the elliptical vortex cross section and their oscillations during fully developed UPL instability is highlighted. The ellipticity of the vortex cross section increases as the vortex center position gets closer to the draft tube wall away from the turbine outlet. In addition, the vortex cross section dimensions oscillate with opposite phase from either side of a pressure node located along the draft tube. This results in low oscillations of the total void fraction in the draft tube, compared with results obtained locally. This effect should be considered in the one-dimensional modeling of the cavitation flow during UPL instability for further stability analysis. The new insights on UPL instability presented in this paper may potentially lead to a better theoretical understanding and modeling of this phenomenon in Francis turbines draft tube.

Funder

Waseda Research Institute for Science and Engineering

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3