Observing strongly confined multiexcitons in bulk-like CsPbBr3 nanocrystals

Author:

Strandell Dallas P.1ORCID,Kambhampati Patanjali1ORCID

Affiliation:

1. Department of Chemistry, McGill University , Montreal, Quebec H3A 0G4, Canada

Abstract

We monitor the time-resolved photoluminescence (t-PL) from CsPbBr3 perovskite nanocrystals with a time resolution of 3 ps, which is fast enough to resolve emission from potential multiexcitonic states. Being 15 nm in length and twice the Bohr length, these nanocrystals are either weakly confined or bulk-like. In contrast to this expectation of weak confinement, emission from multiexcitons is observed with binding energies consistent with strongly confined quantum dots. In addition to emission from biexcitons, emission from triexcitons is observed. The triexciton emission includes both S and P recombination channels. Excitation with different amounts of excess energy yields the same PL spectral dynamics, indicating that there are no hot carrier effects, and the electronic structure of the absorbing states is the same. The kinetics of the multiexciton populations are presented in two ways. The kinetics are first shown in a spectrally integrated form, showing faster t-PL at higher fluences independent of excitation excess energy. Both excess energies show the same saturation response. In the second way of presenting the kinetics, the multiexciton populations are decomposed and presented as transients and saturation curves. These decomposed spectra into exciton, biexciton, and triexciton populations enable further insight into their kinetics and fluence dependence.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3