Explaining the structure sensitivity of Pt and Rh for aqueous-phase hydrogenation of phenol

Author:

Barth Isaiah12ORCID,Akinola James12ORCID,Lee Jonathan12ORCID,Gutiérrez Oliver Y.3ORCID,Sanyal Udishnu3ORCID,Singh Nirala12ORCID,Goldsmith Bryan R.12ORCID

Affiliation:

1. Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA

2. Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan 48109-2136, USA

3. Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

Abstract

Phenol is an important model compound to understand the thermocatalytic (TCH) and electrocatalytic hydrogenation (ECH) of biomass to biofuels. Although Pt and Rh are among the most studied catalysts for aqueous-phase phenol hydrogenation, the reason why certain facets are active for ECH and TCH is not fully understood. Herein, we identify the active facet of Pt and Rh catalysts for aqueous-phase hydrogenation of phenol and explain the origin of the size-dependent activity trends of Pt and Rh nanoparticles. Phenol adsorption energies extracted on the active sites of Pt and Rh nanoparticles on carbon by fitting kinetic data show that the active sites adsorb phenol weakly. We predict that the turnover frequencies (TOFs) for the hydrogenation of phenol to cyclohexanone on Pt(111) and Rh(111) terraces are higher than those on (221) stepped facets based on density functional theory modeling and mean-field microkinetic simulations. The higher activities of the (111) terraces are due to lower activation energies and weaker phenol adsorption, preventing high coverages of phenol from inhibiting hydrogen adsorption. We measure that the TOF for ECH of phenol increases as the Rh nanoparticle diameter increases from 2 to 10 nm at 298 K and −0.1 V vs the reversible hydrogen electrode, qualitatively matching prior reports for Pt nanoparticles. The increase in experimental TOFs as Pt and Rh nanoparticle diameters increase is due to a larger fraction of terraces on larger particles. These findings clarify the structure sensitivity and active site of Pt and Rh for the hydrogenation of phenol and will inform the catalyst design for the hydrogenation of bio-oils.

Funder

U.S. Department of Energy

National Science Foundation

National Energy Research Scientific Computing Center

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3