Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction

Author:

Armstrong Michael R.1ORCID,Radousky Harry B.1ORCID,Austin Ryan A.1,Tschauner Oliver2ORCID,Brown Shaughnessy3ORCID,Gleason Arianna E.3ORCID,Goldman Nir1ORCID,Granados Eduardo3,Grivickas Paulius1ORCID,Holtgrewe Nicholas4,Kroonblawd Matthew P.1,Lee Hae Ja3,Lobanov Sergey5,Nagler Bob3,Nam Inhyuk3,Prakapenka Vitali6ORCID,Prescher Clemens7,Reed Evan J.8,Stavrou Elissaios1,Walter Peter3ORCID,Goncharov Alexander F.4ORCID,Belof Jonathan L.1ORCID

Affiliation:

1. Department of Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94551, USA

2. Department of Geoscience, UNLV, Las Vegas, Nevada 89154-4010, USA

3. Matter in Extreme Conditions, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

4. Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA

5. Institut für Geowissenschaften, Universität Potsdam, Golm, Germany

6. GSECARS, Argonne National Laboratory, Argonne, Illinois 60439, USA

7. Institute of Earth and Environmental Science, University of Freiburg, Freiburg, Germany

8. Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA

Abstract

The response of rapidly compressed highly oriented pyrolytic graphite (HOPG) normal to its basal plane was investigated at a pressure of ∼80 GPa. Ultrafast x-ray diffraction using ∼100 fs pulses at the Materials Under Extreme Conditions sector of the Linac Coherent Light Source was used to probe the changes in crystal structure resulting from picosecond timescale compression at laser drive energies ranging from 2.5 to 250 mJ. A phase transformation from HOPG to a highly textured hexagonal diamond structure is observed at the highest energy, followed by relaxation to a still highly oriented, but distorted graphite structure following release. We observe the formation of a highly oriented lonsdaleite within 20 ps, subsequent to compression. This suggests that a diffusionless martensitic mechanism may play a fundamental role in phase transition, as speculated in an early work on this system, and more recent static studies of diamonds formed in impact events.

Funder

Lawrence Livermore National Laboratory

Defense Threat Reduction Agency

Army Research Office

Carnegie Institution for Science

Division of Earth Sciences

U.S. Department of Energy

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3