Half-metallic magnetism in 2D MX2 (M = V, Cr, Mn, and Fe; X = S, Se, and Te) intercalated with 1D MX chains

Author:

Ding W. J.1,Li Xin2ORCID,Zhao Zhenjie2ORCID,Xie Wenhui2ORCID

Affiliation:

1. Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University 1 , Shanghai 200062, China

2. Engineering Research Center for Nanophotonics and Advanced Instrument, Joint Institute of Advanced Science and Technology, School of Physics and Electronic Science, East China Normal University 2 , Shanghai 200062, China

Abstract

Intercalation has attracted considerable attention due to its extensive ability to modify the electronic, optical, and magnetic properties of two-dimensional (2D) layered nanomaterials. Typically, dispersed atoms or molecules are inserted into the van der Waals gap of the 2D materials. Recently, Guo et al. experimentally reported the novel VS2–VS superlattice, where the intercalation takes the form of atomic chain arrays. In this study, we employed the first-principles calculations based on density functional theory to investigate a series of analogous 2D MX2–MX–MX2 nanomaterials, which, consisting of 2D transition metal dichalcogenide bilayers, intercalated with a one-dimensional transition metal chalcogenide MX chain array, forming a hotdog-like structure. Some of the 2D MX2–MX–MX2 are thermally and dynamically stable, suggesting their potential for experimental fabrication similar to VS2–VS–VS2. MnS2–MnS–MnS2 and MnSe2–MnSe–MnSe2 have been found to exhibit ferromagnetic half-metallic properties. In addition, VSe2–VSe–VSe2, CrS2–CrS–CrS2, and CrSe2–CrSe–CrSe2 have been found to be thermally and dynamically stable. Under appropriate external stress, doping, or bias, they could become ferromagnetic half-metals, revealing their potential for spintronic applications.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3