Nonlinear hydrological time series modeling to forecast river level dynamics in the Rio Negro Uruguay basin

Author:

Duque Johan S.12ORCID,Santos Rafael1ORCID,Arteaga Johny3ORCID,Oyarzabal Ricardo S.4ORCID,Santos Leonardo B. L.4ORCID

Affiliation:

1. National Institute for Space Research, INPE 1 , São José dos Campos 12227-010, Brazil

2. Universidad Tecnológica del Uruguay, UTEC. ITR-CS 2 , Durazno 97000, Uruguay

3. USDA UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University 3 , Fort Collins, Colorado 80523, USA

4. National Center for Monitoring and Early Warning of Natural Disasters, Cemaden 4 , São José dos Campos 12630-000, Brazil

Abstract

Floods significantly impact the well-being and development of communities. Hence, understanding their causes and establishing methodologies for risk prevention is a critical challenge for effective warning systems. Complex systems such as hydrological basins are modeled through hydrological models that have been utilized to understand water recharge of aquifers, available volume of dams, and floods in diverse regions. Acquiring real-time hydrometeorological data from basins and rivers is vital for establishing data-driven-based models as tools for the prediction of river-level dynamics and for understanding its nonlinear behavior. This paper introduces a hydrological model based on a multilayer perceptron neural network as a useful tool for time series modeling and forecasting river levels in three stations of the Rio Negro basin in Uruguay. Daily time series of river levels and rainfall serve as the input data for the model. The assessment of the models is based on metrics such as the Nash–Sutcliffe coefficient, the root mean square error, percent bias, and volumetric efficiency. The outputs exhibit varying model performance and accuracy during the prediction period across different sub-basin scales, revealing the neural network’s ability to learn river dynamics. Lagged time series analysis demonstrates the potential for chaos in river-level time series over extended time periods, mainly when predicting dam-related scenarios, which shows physical connections between the dynamical system and the data-based model such as the evolution of the system over time.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3