Evaluation of wind resource uncertainty on energy production estimates for offshore wind farms

Author:

Klemmer Kerry S.1ORCID,Condon Emily P.1ORCID,Howland Michael F.1ORCID

Affiliation:

1. Civil and Environmental Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, USA

Abstract

Wind farm design generally relies on the use of historical data and analytical wake models to predict farm quantities, such as annual energy production (AEP). Uncertainty in input wind data that drive these predictions can translate to significant uncertainty in output quantities. We examine two sources of uncertainty stemming from the level of description of the relevant meteorological variables and the source of the data. The former comes from a standard practice of simplifying the representation of the wind conditions in wake models, such as AEP estimates based on averaged turbulence intensity (TI), as opposed to instantaneous. Uncertainty from the data source arises from practical considerations related to the high cost of in situ measurements, especially for offshore wind farms. Instead, numerical weather prediction (NWP) modeling can be used to characterize the more exact location of the proposed site, with the trade-off of an imperfect model form. In the present work, both sources of input uncertainty are analyzed through a study of the site of the future Vineyard Wind 1 offshore wind farm. This site is analyzed using wind data from LiDAR measurements located 25 km from the farm and NWP data located within the farm. Error and uncertainty from the TI and data sources are quantified through forward analysis using an analytical wake model. We find that the impact of TI error on AEP predictions is negligible, while data source uncertainty results in 0.4%–3.7% uncertainty over feasible candidate hub heights for offshore wind farms, which can exceed interannual variability.

Funder

MIT Energy Initiative

National Science Foundation

MIT Civil and Environmental Engineering

XSEDE Stampede2

Publisher

AIP Publishing

Subject

Renewable Energy, Sustainability and the Environment

Reference55 articles.

1. California offshore wind energy potential;Renewable Energy,2010

2. The White House, see https://www.whitehouse.gov/briefing-room/statements-releases/2021/03/29/fact-sheet-biden-administration-jumpstarts-offshore-wind-energy-projects-to-create-jobs/ for “ Fact Sheet: Biden Administration Jumpstarts Offshore Wind Energy Projects to Create Jobs” (2021).

3. Extreme wind and waves in U.S. east coast offshore wind energy lease areas;Energies,2021

4. A. Eberle , J. O.Roberts, A.Key, P.Bhaskar, and K. L.Dykes, “ NREL's balance-of-system cost model for land-based wind,” Technical Report No. NREL/TP-6A20-72201 [ National Renewable Energy Laboratory (NREL), Golden, CO, 2019].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3