Analysis of coherent structures over interacting barchan dunes based on tomographic particle image velocimetry

Author:

Han XiaoleiORCID,Rinoshika HirokaORCID,Zhou YuyangORCID,Li JiaweiORCID,Rinoshika AkiraORCID

Abstract

The influence of barchan dune interaction upon unsteady flow separation and wake dynamics around the fixed-bed downstream barchan dune (DBD) model are experimentally investigated at a Reynolds number of 2640 based on the tomographic particle image velocimetry (PIV) system. The time-averaged statistics including the mean velocities, recirculation area, vortex spatial topology, Reynolds stress, and turbulent kinetic energy were used to characterize the flow field and large-scale anisotropy. It was found that arch-shaped vortex “chains” with strong spanwise coherence shedding from isolated barchan crestline populate the whole wake region, while elongated rod-shaped vortex structures with strong streamwise coherence induced by the up-downwash flow around the DBD were found to fill the whole measurement range, which is closely related to “sheltering” effect on the incoming flow acting at DBD due to the presence of upstream barchan dune (UBD). Additionally, in order to study the complex dynamic features of these predominated vortex structure transformations, time-resolved planar particle image velocimetry was applied. This technique allows for providing complementary insights into the temporal behavior of the unsteady coherent flow structures populating the wake field in different experimental configurations. It was found that the basic unsteady flapping motion, vortex roll-up, and complex vortex interactions including vortex pairing, merging, and breaking up can all be analyzed by dividing into certain scales with ease in a combination wavelet and Lagrangian framework.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Reference47 articles.

1. How do bedform patterns arise? New views on the role of bedform interactions within a set of boundary conditions;Earth Surf. Processes Landforms,2010

2. Field measurements of mean and turbulent airflow over a barchan sand dune;Geomorphology,2011

3. Turbulent flow structures and aeolian sediment transport over a barchan sand dune;Geophys. Res. Lett.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3