1. Carvalho, T. P., Soares, F., Vita, R., Francisco, R. P., Basto, J. P., and Alcalá, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers and Industrial Engineering, 137.
2. Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., and Beghi, A. (2015). Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 812–820.
3. B, H. N. (2019). Confusion Matrix, Accuracy, Precision, Recall, F1 Score. Obtenido de Confusion Matrix, Accuracy, Precision, Recall, F1 Score: https://medium.com/analytics-vidhya/confusion-matrix-accuracy-precision-recall-f1-score-ade299cf63cd
4. Fundación OSGeo. (2008). QGIS - El SIG Líder de Código Abierto. Obtenido de QGIS - El SIG Líder de Código Abierto: https://www.qgis.org/es/site/about/index.html
5. Stochastic data mining tools for pipe blockage failure prediction