Circle packing in regular polygons

Author:

Amore Paolo1ORCID

Affiliation:

1. Facultad de Ciencias, CUICBAS, Universidad de Colima , Bernal Díaz del Castillo 340, Colima, Colima, Mexico

Abstract

We study the packing of a large number of congruent and non-overlapping circles inside a regular polygon. We have devised efficient algorithms that allow one to generate configurations of N densely packed circles inside a regular polygon, and we have carried out intensive numerical experiments spanning several polygons (the largest number of sides considered here being 16) and up to 200 circles (400 circles in the special cases of the equilateral triangle and the regular hexagon). Some of the configurations that we have found possibly are not global maxima of the packing fraction, particularly for N≫1, due to the great computational complexity of the problem, but nonetheless they should provide good lower bounds for the packing fraction at a given N. This is the first systematic numerical study of packing in regular polygons, which previously had only been carried out for the equilateral triangle, the square, and the circle.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference89 articles.

1. On the origin of number and arrangement of the places of exit on the surface of pollen-grains;Recl. Trav. Bot. Néerl.,1930

2. A proof of the Kepler conjecture;Ann. Math.,2005

3. Über die dichteste Kugellagerung;Math. Z.,1942

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Circle packing on spherical caps;Physics of Fluids;2024-09-01

2. Positioning of new mobile tower using Circle Packing Problem;Evolutionary Intelligence;2024-04-11

3. Circle packing in arbitrary domains;Physics of Fluids;2023-12-01

4. Digital Model of Natural Cores Using Geometric Design;Cybernetics and Systems Analysis;2023-11

5. Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container;Mathematics;2023-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3