Surrogate-based multi-objective design optimization of tree-shaped fins with uniform branch end distribution for latent heat thermal energy storage

Author:

Kim HansolORCID,Seo JosephORCID,Hassan Yassin A.12ORCID

Affiliation:

1. J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University 1 , College Station, Texas 77843, USA

2. Department of Nuclear Engineering, Texas A&M University 2 , College Station, Texas 77843, USA

Abstract

The enhancement of latent heat thermal energy storage (LHTES) systems through fin geometry optimization remains a critical challenge for leveraging the full potential of renewable energy sources. This study focuses on optimizing the geometries of tree-shaped fins to enhance power and energy densities in LHTES systems. The goal is to find branch designs with high energy and power density through a novel surrogate model-based optimization strategy that explores a broad design space. The surrogate models applied, including linear regression, principal component analysis-based linear regression, artificial neural networks, and random forest, are evaluated for their predictive performance. The random forest model demonstrates superior accuracy in predicting targets. The optimization process results in a Pareto-optimal design with a volume fraction of 33.9%. This optimal design substantially enhances the system's power density by 61.6% compared to conventional plate fins at an equivalent energy density. This optimized design improves energy and power density, achieving a uniform end-to-branch distribution, which is a pivotal factor for consistent temperature distribution and improved thermal efficiency. By integrating surrogate-based optimization with broad ranges of the tree-shaped fin design, this research has significantly improved the operational efficiency of LHTES systems. This research promises more effective thermal management and provides a methodological framework for design innovation in thermal energy storage.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3