Computational studies of structural, energetic, and electronic properties of pure Pt and Mo and mixed Pt/Mo clusters: Comparative analysis of characteristics and trends

Author:

Sumer Aslihan12ORCID,Jellinek Julius1ORCID

Affiliation:

1. Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

2. Faculty of Pharmacy, University of Health Sciences Turkey, Istanbul 34668, Turkey

Abstract

The added technological potential of bimetallic clusters and nanoparticles, as compared to their pure (i.e., one-component) counterparts, stems from the ability to further fine-tune their properties and, consequently, functionalities through a simultaneous use of the “knobs” of size and composition. The practical realization of this potential can be greatly advanced by the knowledge of the correlations and relationships between the various characteristics of bimetallic nanosystems on the one hand and those of their pure counterparts as well as pure constituent components on the other hand. Here, we present results of a density functional theory based study of pure Ptn and Mon clusters aimed at revisiting and exploring further their structural, electronic, and energetic properties. These are then used as a basis for analysis and characterization of the results of calculations on two-component Ptn-mMom clusters. The analysis also includes establishing relationships between the properties of the Ptn-mMom clusters and those of their Ptn-m and Mom components. One of the particularly intriguing findings suggested by the calculated data is a linear dependence of the average binding energy per atom in sets of Ptn-mMom clusters that have the same fixed number m of Mo atoms and different number n-m of Pt atoms on the fractional content (n-m)/n of Pt atoms. We derive an analytical model that establishes the fundamental basis for this linearity and expresses its parameters—the m-dependent slope and intercept—in terms of characteristic properties of the constituent components, such as the average binding energy per atom of Mom and the average per-atom adsorption energy of the Pt atoms on Mom. The conditions of validity and degree of robustness of this model and of the linear relationship predicted by it are discussed.

Funder

Chemical Sciences, Geosciences, and Biosciences Division

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3