A semi-empirical force balance-based model to capture sessile droplet spread on smooth surfaces: A moving front kinetic Monte Carlo study

Author:

Chaffart Donovan1ORCID,Shi SonglinORCID,Ma ChenORCID,Lv CunjingORCID,Ricardez-Sandoval Luis A.1ORCID

Affiliation:

1. Department of Chemical Engineering, University of Waterloo 1 , Waterloo, Ontario N2L 3G1, Canada

Abstract

This study reports the development of a semi-empirical force balance-based moving front kinetic Monte Carlo (FB-MFkMC) model to describe droplet spreading on a smooth surface. The proposed model depicts the state-by-state evolution of a sessile droplet in a stochastic manner that captures the molecular-level events taking place in an accurate yet efficient manner. In the developed model, the movement of the droplet triple contact line is depicted using rate expressions that detail the probability that the contact line will locally advance over a set distance at each time point. These rate expressions are derived based on the force balance acting upon the droplet interface, which is captured using analytical inertial and capillary expressions from the literature. This work furthermore derives a new semi-empirical expression to depict the viscous damping force acting on the droplet. The derived viscous force term depends on a fitted parameter c, whose value was observed to vary solely depending on the droplet liquid as captured predominantly by the droplet Ohnesorge number. The proposed FB-MFkMC approach is subsequently validated using data obtained both from conducted experiments and from the literature to support the robustness of the framework. The predictive capabilities of the developed model are further inspected to provide insights on the sessile droplet system behavior.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference78 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3