A novel streamline simulation method for fractured reservoirs with full-tensor permeability

Author:

Rao XiangORCID,He XupengORCID,Kwak Hyung1ORCID,Yousef Ali,Hoteit Hussein2ORCID

Affiliation:

1. Saudi Aramco 3 , Dhahran, Saudi Arabia

2. King Abdullah University of Science and Technology 1 , Thuwal, Saudi Arabia

Abstract

In this work, we develop a novel streamline (SL) simulation method that integrates seamlessly within the embedded discrete fracture model (EDFM). The novel SL-based method is developed based on a hybrid of two-point flux approximation (TPFA) and mimetic finite difference (MFD) methods, which is applicable to a two-phase anisotropic flow in fractured reservoirs. We refer to this novel approach as EDFM-TPFA-MFD-SL. The approach is operated in an IMplicit Pressure Explicit Saturation (IMPES) manner. First, this work establishes a novel EDFM utilizing a hybrid TPFA-MFD scheme to solve the pressure equation for phase flux approximation. Subsequently, we introduce a practical streamline tracing workflow designed to derive the distribution of streamlines within the reservoir domain and the time-of-flight distribution along each individual streamline. This feature allows for the parallel computation of water saturation along the streamlines. Two numerical examples are presented to validate the superiority of the proposed EDFM-TPFA-MFD-SL method compared to the existing streamline-based EDFM on cases with full-tensor permeability. The results show that the proposed method could significantly mitigate the numerical dissipation and reduce the computation costs. Another numerical example demonstrates the effectiveness of the proposed method in dealing with complex fracture networks and providing rapid flow diagnostics, indicating its significant potential for real-world field applications.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Reference61 articles.

1. A fully implicit mimetic finite difference scheme for general purpose subsurface reservoir simulation with full tensor permeability;J. Comput. Phys.,2020

2. Batycky, R. P., “ A three-dimensional two-phase field scale streamline simulator,” Ph.D. thesis ( Stanford University, 1997a).

3. A 3D field-scale streamline-based reservoir simulator;SPE Reservoir Eng.,1997

4. Black oil streamline simulator with capillary effects,2003

5. Multi-scale finite volume method for discrete fracture modeling on unstructured grids (MS-DFM);J. Comput. Phys.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3