A numerical method to mimic an experimental wind gust generator: The immersed boundary gust generator

Author:

Boulbrachene K.1ORCID,Breuer M.1ORCID

Affiliation:

1. Professur für Strömungsmechanik, Helmut-Schmidt-Universität Hamburg , D-22043 Hamburg, Germany

Abstract

To generate horizontal wind gusts in a classical wind tunnel, Wood, Breuer, and Neumann [A novel approach for artificially generating horizontal wind gusts based on a movable plate: The paddle,” J. Wind Eng. Ind. Aerodyn. 230, 105170 (2022)] developed a new wind gust generator denoted the “paddle.” The working principle relies on the partial blocking of the outlet of the wind tunnel nozzle by a plate that vertically moves into the free-stream. Based on laser-Doppler anemometer measurements of the velocity at only a few locations, the basic functionality of the device was proven. The objective of the present contribution is to numerically mimic the gust generator and the flow field induced by the paddle in the test section. Contrary to the single-point measurements, the three-dimensional time-resolved simulation delivers the entire flow field and thus allows to investigate all details of the generated gust. To describe the paddle motion, the immersed boundary method with a continuous and direct forcing approach is implemented into a finite-volume flow solver for large-eddy simulations. A uniform and a non-uniform distribution of the Lagrangian markers are investigated where the latter ensures that an excessive increase in the computational resources required can be avoided. The predictions allow to characterize the resulting flow features induced by the paddle in great detail. Furthermore, a comparison of the numerical and experimental results is carried out based on the time histories of the streamwise and vertical velocity components at certain positions showing a close agreement. Finally, the forces acting on the fluid by the moving paddle are evaluated.

Funder

Deutsche Forschungsgemeinschaft

dtec.bw - Digitalization and Research Center of the Bundeswehr. Dtec.bw is funded by the European Union - NextGenerationEU

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3