Analyzing the early impact dynamics of single droplets impacting onto wetted surfaces

Author:

Geppert A. K.1ORCID,Stober J. L.1ORCID,Steigerwald J.1ORCID,Schulte K.1ORCID,Tonini S.2ORCID,Lamanna G.1ORCID

Affiliation:

1. Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart 1 , Stuttgart, Germany

2. Department of Engineering and Applied Science, University of Bergamo 2 , Bergamo, Italy

Abstract

Single droplet impacts onto thin wall-films are a common phenomenon in many applications. For sufficiently high impact velocities, the droplet impact process consists of three phases, i.e., initial contact stage, droplet deformation with radial momentum transfer inducing an upward rising lamella, and crown propagation. Here, we present the results of a combined numerical and experimental study focusing on the early dynamics of the impact process. Specifically, the effects of the initial droplet shape, wall-film thickness, and contact line motion are analyzed. Prior to impact, an oblate spheroidal droplet shape was observed. Using direct numerical simulation, we show that the droplet shape affects the impact dynamics only during the first two phases, as it is one of the key parameter influencing the correct prediction of the impact zone. The contact line propagation is described by a square-root-time dependence R¯CL=ατ for both, dry and wetted surfaces. On dry surfaces, the advancement of the contact line is determined by the rolling motion of the truncated droplet. On wetted surfaces, the value of the α-parameter is controlled by two concurrent effects, namely, rolling motion and wall-film inertia. For impact onto thin films, the rolling motion prevails. With increasing wall-film height, the droplet penetrates into the soft substrates and wall-film inertia becomes the controlling factor. These insights into the early impact dynamics on wetted surface are important for the formulation of a unified modeling approach.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3