Mixing performance improvement of T-shaped micromixer using novel structural design of channel and obstacles

Author:

Tajik Ghanbari T.1,Rahimi M.2ORCID,Ranjbar A. A.1,Pahamli Y.3ORCID,Torbatinejad A.1ORCID

Affiliation:

1. School of Mechanical Engineering, Babol University of Technology 1 , Babol, Iran

2. Department of Mechanical Engineering, Faculty of Engineering, Golestan University 2 , Gorgan, Iran

3. Department of Mechanical Engineering, Semnan University 3 , Semnan, Iran

Abstract

Micromixers play a crucial role in mixing different fluids within microfluidic systems. Therefore, it is essential to analyze parameters, such as dimensional characteristics, mixing length, micromixer efficiency, and the mixing process, to enhance their performance. In this study, we examine various T-shaped micromixer designs, including triangular, rectangular, and trapezius configurations, to evaluate their mixing performance and compare them with a corresponding circular micromixer. Additionally, we investigate the effects of obstacles, varying their angles and distances, in the circular micromixer to determine trends in mixing improvement across cases. The micromixers have minimal dimensions, resulting in laminar flow. By comparing the outcomes of the proposed cases with those without obstacles, we find that the triangular micromixer exhibits the highest mixing performance with 8.3% improvement with respect to the circular case. Furthermore, while the rectangular case initially displayed the weakest performance at lower Reynolds numbers, a discernible enhancement was observed as Reynolds numbers increased. This improvement was attributed to the emergence of vortices at Re = 20. The performance showed a substantial increase, reaching a coefficient of 0.98 at Re = 40, a value closely approaching that of the triangular case. Among the three obstacles, one obstacle is varied at four different angles (0°, 60°, 90°, and 120°), while the other two obstacles remain fixed at distances of 150 and 200 μm. In cases involving obstacles, a noteworthy enhancement was evident when compared to cases without obstacles. In these cases, the introduction of obstacles resulted in a remarkable 34% improvement in the mixing index compared to obstacle-free scenarios. This improvement can be attributed to the observed flow behavior, where the formation of vortices, even at low Reynolds numbers, emerges as a key factor contributing to this enhancement. In addition, we assess the mixing enhancement to identify the most efficient arrangement of obstacles. The results indicate angles of 90° and 120° are more effective than others in improving mixing proficiency.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3