Monitoring non-specific adsorption at solid–liquid interfaces by supercritical angle fluorescence microscopy

Author:

Au Aaron12,Ho Man23,Wheeler Aaron R.23ORCID,Yip Christopher M.1245ORCID

Affiliation:

1. Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada

2. Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada

3. Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada

4. Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada

5. Department of Biochemistry, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada

Abstract

Supercritical angle fluorescence (SAF) microscopy is a novel imaging tool based on the use of distance-dependent fluorophore emission patterns to provide accurate locations of fluorophores relative to a surface. This technique has been extensively used to construct accurate cellular images and to detect surface phenomena in a static environment. However, the capability of SAF microscopy in monitoring dynamic surface phenomena and changes in millisecond intervals is underexplored in the literature. Here, we report on a hardware add-on for a conventional inverted microscope coupled with a post-processing Python module that extends the capability of SAF microscopy to monitor dynamic surface adsorption in sub-second intervals, thereby greatly expanding the potential of this tool to study surface interactions, such as surface fouling and competitive surface adhesion. The Python module enables researchers to automatically extract SAF profiles from each image. We first assessed the performance of the system by probing the specific binding of biotin-fluorescein conjugates to a neutravidin-coated cover glass in the presence of non-binding fluorescein. The SAF emission was observed to increase with the quantity of bound fluorophore on the cover glass. However, a high concentration of unbound fluorophore also contributed to overall SAF emission, leading to over-estimation in surface-bound fluorescence. To expand the applications of SAF in monitoring surface phenomena, we monitored the non-specific surface adsorption of BSA and non-ionic surfactants on a Teflon-AF surface. Solution mixtures of bovine serum albumin (BSA) and nine Pluronic/Tetronic surfactants were exposed to a Teflon-AF surface. No significant BSA adsorption was observed in all BSA-surfactant solution mixtures with negligible SAF intensity. Finally, we monitored the adsorption dynamics of BSA onto the Teflon-AF surface and observed rapid BSA adsorption on Teflon-AF surface within 10 s of addition. The adsorption rate constant (ka) and half-life of BSA adsorption on Teflon-AF were determined to be 0.419 ± 0.004 s−1 and 1.65 ± 0.016 s, respectively, using a pseudo-first-order adsorption equation.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3