Numerical investigation of flow features for two horizontal rectangular polygons

Author:

Gul Farheen1ORCID,Nazeer Ghazala1ORCID,Sana Madiha2,Shigri Sehrish Hassan3,Ul Islam Shams4ORCID

Affiliation:

1. The Government Sadiq College Women University 1 , Bahawalpur 63100, Pakistan

2. The Islamia University 2 , Bahawalpur 63100, Pakistan

3. FAST NUCES 3 , Islamabad 44100, Pakistan

4. Comsats University 4 , Islamabad 44100, Pakistan

Abstract

Studying fluid dynamics is crucial to advancing scientific knowledge and technological advancements worldwide. This study examines the behavior of a viscous fluid when it interacts with two horizontally positioned rectangular polygons arranged in a staggered arrangement. The lattice Boltzmann method is employed to analyze two-dimensional flow, specifically focusing on two physical parameters: Reynolds number, which is fixed at 150, and gap spacings, which vary simultaneously in X and Y directions. The results are analyzed by examining vortex snapshots, time trace histories of drag and lift coefficients, and power spectra analysis of lift coefficients. The progressive increase in the gap distances between the two horizontal rectangular polygons distinguishes seven separate flow vortex streets. The vortex shedding mechanism is disrupted at narrow gap spacings and reaches its ideal state at large gap spacings. There is the potential for the flow regime to be altered by the staggered alignment of rectangular polygons. Increasing the space between the polygons has a considerable impact on the flow characteristics brought about.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3