Domain wall saddle point morphology in ferroelectric triglycine sulfate

Author:

McCluskey C. J.1ORCID,Kumar A.1ORCID,Gruverman A.2ORCID,Luk'yanchuk I.3ORCID,Gregg J. M.1ORCID

Affiliation:

1. Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast 1 , Belfast BT7 1NN, United Kingdom

2. Department of Physics and Astronomy, University of Nebraska–Lincoln 2 , Lincoln, Nebraska 68588, USA

3. Laboratory of Condensed Matter Physics, University of Picardie 3 , Amiens 80039, France

Abstract

Ferroelectric domain walls, across which there is a divergence in polarization, usually have enhanced electrical conductivity relative to bulk. However, in lead germanate, head-to-head and tail-to-tail walls are electrically insulating. Recent studies have shown that this is because, when oppositely oriented domains meet, polar divergence is obviated by a combination of domain bifurcation and suspected local dipolar rotation. To explore the uniqueness, or otherwise, of this microstructure, we have used tomographic piezoresponse force microscopy to map three-dimensional domain morphologies in another uniaxial ferroelectric system: triglycine sulfate. This mapping reveals an abundance of domain wall saddle points, which are characteristic of interlocking bifurcated domains. Conducting atomic force microscopy, performed close to the saddle points, showed no evidence for highly localized conducting domain wall sections, across which a divergence in polarization might be implied; this supports the notion that localized dipolar rotation occurs to minimize any potential polar discontinuity. Overall, our study, therefore, confirms that mutual domain bifurcation and suspected local dipolar rotation are not unique to lead germanate and instead may be widely present in other uniaxial ferroelectrics.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3