Nuclear quantum effects in the acetylene:ammonia plastic co-crystal

Author:

Thakur Atul C.1ORCID,Remsing Richard C.1ORCID

Affiliation:

1. Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08854, USA

Abstract

Organic molecular solids can exhibit rich phase diagrams. In addition to structurally unique phases, translational and rotational degrees of freedom can melt at different state points, giving rise to partially disordered solid phases. The structural and dynamic disorder in these materials can have a significant impact on the physical properties of the organic solid, necessitating a thorough understanding of disorder at the atomic scale. When these disordered phases form at low temperatures, especially in crystals with light nuclei, the prediction of material properties can be complicated by the importance of nuclear quantum effects. As an example, we investigate nuclear quantum effects on the structure and dynamics of the orientationally disordered, translationally ordered plastic phase of the acetylene:ammonia (1:1) co-crystal that is expected to exist on the surface of Saturn’s moon Titan. Titan’s low surface temperature (∼90 K) suggests that the quantum mechanical behavior of nuclei may be important in this and other molecular solids in these environments. By using neural network potentials combined with ring polymer molecular dynamics simulations, we show that nuclear quantum effects increase orientational disorder and rotational dynamics within the acetylene:ammonia (1:1) co-crystal by weakening hydrogen bonds. Our results suggest that nuclear quantum effects are important to accurately model molecular solids and their physical properties in low-temperature environments.

Funder

National Aeronautics and Space Administration

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3