Affiliation:
1. Mechanical Engineering Department, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, USA
Abstract
Reliable nanoswitch operation requires low contact voltages and stable electrical contact resistance (ECR). Surface cleanliness is crucial to prevent nanomechanical switch failure, which can occur due to the presence of insulating adventitious hydrocarbon films. In situ O2 plasma cleaning is effective but oxidizes metal surfaces. Here, the noble metal Pt, which forms PtOx, is employed to form electrodes. Previous studies report on PtOx electrical resistivity, but the effects of PtOx evolution at contacting interfaces due to electrical and mechanical stimuli have not been explored. This study investigates the impact of PtOx on ECR at low contact voltages under hot switching, cold switching, and mechanical cycling conditions. An increase in ECR upon plasma cleaning indicates the presence of a resistive PtOx layer. After hot and cold switch cycling at applied voltages of 300 mV or less, a low stable ECR is achieved. A higher contact voltage accelerates ECR stabilization. The results are consistent with PtOx film volatilization, which is primarily due to Joule heating rather than mechanical rupture. This investigation advances the understanding of interface evolution in plasma-cleaned nanoswitches.
Funder
National Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Critical Review on the Future of Robotics in Manufacturing;2024 IEEE 3rd International Conference on Electrical Power and Energy Systems (ICEPES);2024-06-21