Affiliation:
1. Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
2. Southwestern Institute of Physics, Chengdu, Sichuan 610000, China
Abstract
Two newly developed, eight-channel, integrated Beam Emission Spectroscopy (BES) detectors have been installed at Huan-Liuqi-2A tokamak, which extends the existing 16 single-channel modular BES system with additional 16 spatial channels. The BES collects the Doppler-shifted Balmer D α emission with a spatial resolution of 1 cm (radial) × 1.5 cm (poloidal) and a temporal resolution of 0.5 µs to measure long-wavelength ( k⊥ ρ i < 1) density fluctuations. Compared to the modular BES, the dark noise of the integrated BES is reduced by 50%–60% on average. The signal-to-noise ratio of the integrated BES system is optimized by the high light throughput front-end optics, high quantum efficiency photodiodes, high-gain, low-noise preamplifiers, and sufficient cooling capacity provided by the thermoelectric cooling (TEC) units that maintain the detectors at −20 °C. Crosstalk between channels that share the same optical system is found to be negligible. High-quality density fluctuation data enables 2D (radial–poloidal) imaging of turbulence, which allows for multi-channel spectral analysis, multi-channel cross-correlation analysis and velocimetry analysis. Preliminary results show that BES successfully captures the spatiotemporal features of the local turbulence and obtains statistically consistent turbulence characterization results.
Funder
China National Nuclear Corporation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献