Frequency-domain probe beam deflection method for measurement of thermal conductivity of materials on micron length scale

Author:

Sun Jinchi1ORCID,Lv Guangxin1ORCID,Cahill David G.1ORCID

Affiliation:

1. Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois , Urbana, Illinois 61801, USA

Abstract

Time-domain thermoreflectance and frequency-domain thermoreflectance (FDTR) have been widely used for non-contact measurement of anisotropic thermal conductivity of materials with high spatial resolution. However, the requirement of a high thermoreflectance coefficient restricts the choice of metal coating and laser wavelength. The accuracy of the measurement is often limited by the high sensitivity to the radii of the laser beams. We describe an alternative frequency-domain pump-probe technique based on probe beam deflection. The beam deflection is primarily caused by thermoelastic deformation of the sample surface, with a magnitude determined by the thermal expansion coefficient of the bulk material to measure. We derive an analytical solution to the coupled elasticity and heat diffusion equations for periodic heating of a multilayer sample with anisotropic elastic constants, thermal conductivity, and thermal expansion coefficients. In most cases, a simplified model can reliably describe the frequency dependence of the beam deflection signal without knowledge of the elastic constants and thermal expansion coefficients of the material. The magnitude of the probe beam deflection signal is larger than the maximum magnitude achievable by thermoreflectance detection of surface temperatures if the thermal expansion coefficient is greater than 5 × 10−6 K−1. The uncertainty propagated from laser beam radii is smaller than that in FDTR when using a large beam offset. We find a nearly perfect matching of the measured signal and model prediction, and measure thermal conductivities within 6% of accepted values for materials spanning the range of polymers to gold, 0.1–300 W/(m K).

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3