State-selective exciton–plasmon interplay in a hybrid WSe2/CuFeS2 nanosystem

Author:

Cheng Zhiqiang1,Niu Xiaoyou1,Jiang Shenlong1ORCID,Zhang Qun1ORCID

Affiliation:

1. Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

Abstract

The integration of confined exciton and localized surface plasmon in a hybrid nanostructure has recently stimulated extensive interests. The mechanistic insights into the elusive exciton–plasmon interplay at the nanoscale are of both fundamental and applicable values. Herein, by taking a hybrid WSe2/CuFeS2 system as a prototype, in which the excitonic semiconductor WSe2 nanosheets are interfaced with the plasmonic semiconductor CuFeS2 nanocrystals to form a heterostructure, we design and perform an ultrafast dynamics study to glean information in this regard. Specifically, the band-alignment relationship between the two components enables the contrasting case studies in which the excitonic excited states of WSe2 are pre-selected to be on-/off-resonant with the plasmon band of CuFeS2. As revealed by the joint observations from steady-state absorption and photoexcitation-dependent/temperature-dependent femtosecond time-resolved transient absorption (fs-TA) spectroscopy, an effective energy transfer process occurs in this exciton–plasmon system where the energy donor (acceptor) is the excitonic WSe2 (plasmonic CuFeS2) and its efficiency is modulated by the exciton–plasmon coupling strength. Furthermore, as inferred from the temperature-dependent fs-TA analysis, the opening of such an energy-transfer channel turns out to take place during the early phase of plasmon decay (∼1 ps). In addition, the activation energy of energy transfer for a specific exciton-state-selected case is estimated (∼200 meV). This work provides a dynamics perspective to the plasmon semiconductor-involved exciton–plasmon interplay that features excited-state selectivity of exciton band and, hence, would be of guiding value for rational design and optimization of relevant applications based on exciton–plasmon manipulation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Anhui Initiative in Quantum Information Technologies

USTC Key Directions Projects Incubation Fund

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3