Beyond the standard model of topological Josephson junctions: From crystalline anisotropy to finite-size and diode effects

Author:

Pekerten Barış1ORCID,Brandão David S.1ORCID,Bussiere Bailey1ORCID,Monroe David1ORCID,Zhou Tong12ORCID,Han Jong E.1ORCID,Shabani Javad3ORCID,Matos-Abiague Alex4ORCID,Žutić Igor1ORCID

Affiliation:

1. Department of Physics, University at Buffalo, State University of New York 1 , Buffalo, New York 14260, USA

2. Eastern Institute for Advanced Study, Eastern Institute of Technology 2 , Ningbo, Zhejiang 315200, China

3. Center for Quantum Phenomena, Department of Physics, New York University 3 , New York, New York 10003, USA

4. Department of Physics and Astronomy, Wayne State University 4 , Detroit, Michigan 48201, USA

Abstract

A planar Josephson junction is a versatile platform to realize topological superconductivity over a large parameter space and host Majorana bound states. With a change in the Zeeman field, this system undergoes a transition from trivial to topological superconductivity accompanied by a jump in the superconducting phase difference between the two superconductors. A standard model of these Josephson junctions, which can be fabricated to have a nearly perfect interfacial transparency, predicts a simple universal behavior. In that model, at the same value of Zeeman field for the topological transition, there is a π phase jump and a minimum in the critical superconducting current, while applying a controllable phase difference yields a diamond-shaped topological region as a function of that phase difference and a Zeeman field. In contrast, even for a perfect interfacial transparency, we find a much richer and nonuniversal behavior as the width of the superconductor is varied or the Dresselhaus spin–orbit coupling is considered. The Zeeman field for the phase jump, not necessarily π, is different from the value for the minimum critical current, while there is a strong deviation from the diamond-like topological region. These Josephson junctions show a striking example of a nonreciprocal transport and superconducting diode effect, revealing the importance of our findings not only for topological superconductivity and fault-tolerant quantum computing but also for superconducting spintronics.

Funder

Multidisciplinary University Research Initiative

Division of Electrical, Communications and Cyber Systems

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3