Dephasing and phase-locking: Dual role of radial electric field in edge MHD dynamics of toroidally confined plasmas

Author:

Zhang Y.12ORCID,Guo Z. B.2ORCID,Diamond P. H.3ORCID,Xu X. Q.4ORCID,Li Z. Y.5ORCID,Xu M.1

Affiliation:

1. Southwestern Institute of Physics, PO Box 432, Chengdu 610041, China

2. State Key Laboratory of Nuclear Physics and Technology, Fusion Simulation Center, School of Physics, Peking University, Beijing 100871, China

3. University of California San Diego, La Jolla, California 92093, USA

4. Lawrence Livermore National Laboratory, Livermore, California 94551, USA

5. Oak Ridge Associated University, Oak Ridge, Tennessee 37831, USA

Abstract

We carry out several numerical simulations to illustrate how the radial electric field ( Er) impacts the edge magnetohydrodynamic (MHD) instabilities. The analyses reveal that Er-shear ([Formula: see text], here the prime denotes the derivative with respect to the radial direction) tends to stabilize the kink[Formula: see text]Peeling–Ballooning modes by dephasing the perturbed radial velocity ([Formula: see text]) and displacement ([Formula: see text]). However, Er-curvature ([Formula: see text]) tends to destabilize the kink/peeling modes by inducing a phase lock between [Formula: see text] and [Formula: see text]. More specifically, the ratio between them could be measured to quantify their relative competition strength. Consequently, the shape of Er is crucial to the shape of linear growth rate spectrum [Formula: see text] (here n is the toroidal mode number), which further determines the nonlinear dynamics. On the one hand, relatively larger Er-curvature causes narrower [Formula: see text], leading to larger nonlinear energy loss fraction. On the other hand, relatively larger Er-shear has the opposite effect.

Funder

National MCF Energy R&D Program

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Sichuan Youth Science and Technology Innovation Team Project

US Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Reference40 articles.

1. P. H. LeBlond and L. A. Mysak , Waves in the Ocean (Elsevier, 1981).

2. I. M. Held , Large Scale Dynamical Processes in the Atmosphere ( London: Academic Press, 1983), pp. 127–168.

3. Alfvén Waves in the Solar Wind

4. Measurements of microturbulence in tokamaks and comparisons with theories of turbulence and anomalous transport

5. On the opposing roles of the Boussinesq and non‐Boussinesq baroclinic torques in surface gravity wave propagation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3