Modification of a turbulent boundary layer by circular cavities

Author:

Scarano Francesco1ORCID,Jacob Marc C.2ORCID,Gojon Romain1ORCID,Carbonneau Xavier1ORCID,Gowree Erwin R.1ORCID

Affiliation:

1. Département Aérodynamique et Propulsion (DAEP) ISAE-SUPAERO, Université de Toulouse, 10, Avenue Edouard Belin 31400, Toulouse, France

2. Laboratoire de Mécanique des Fluides et d'Acoustique, Ecole Centrale de Lyon, France; Institut National des Sciences Appliquées Lyon, France; and Université Claude Bernard Lyon I, Centre National de Recherche Scientifique, Université de Lyon, 36 av. Guy de Collongue F-69134 Ecully, France

Abstract

It is shown how well-chosen perforations in a wall flow can locally reduce skin friction drag by modifying the generation of bursts in the boundary layer. For this purpose, a detailed hot wire boundary layer experimental investigation of the flow past a perforated plate, complemented with large eddy simulations, is carried out and compared to the smooth case. The perforated plate is obtained with an array of flush-mounted circular cavities. These cavities are disposed in a periodic staggered arrangement. For the three tested flow velocities, the momentum thickness-based Reynolds number varies from [Formula: see text] to 3380 and the cavity diameter and spacing in wall units, respectively, from [Formula: see text] to 250 and [Formula: see text] to 1075, the latter being identical in both spanwise and streamwise directions. The mean velocity profiles evidence a thickening of the viscous sublayer and a decrease in the friction velocity as compared to the smooth wall case. The application of the Variable Interval Time Averaging technique highlights an upward shift of the bursts from the wall and an attenuation of the average burst intensity and duration. Spanwise measurements evidence an overall bursts attenuation despite the lack of spanwise uniformity. The three-dimensional (3D) mean flow topology arising from the large eddy simulations provides evidence for the qualitative similarities between the current setup and the spanwise wall oscillations.

Funder

Agence innovation defense

Occigen

CALMIP

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3