Electromagnetic Weibel instability in spatial anisotropic electron–ion plasmas

Author:

Kumar Amit1ORCID,Gupta Ruby2ORCID,Sharma Jyotsna1ORCID

Affiliation:

1. Department of Physics, Amity School of Applied Sciences, Amity University Haryana, Manesar, Gurugram 122051, India

2. Department of Physics, Swami Shraddhanand College, University of Delhi, Alipur, Delhi 110036, India

Abstract

The Weibel instability due to temperature anisotropy of electrons and ions in a plasma in the presence of cold and warm ions is reported. Numerical calculations of the normalized growth rate are carried out when the frequency of electromagnetic waves is greater than or less than the thermal velocity of electrons for typical existing plasma parameters. The normalized growth rate increases with an increasing normalized wave number, and after attaining maxima, it decreases due to thermal effects. Therefore, a parabolic plot is obtained for the growth rate. The threshold values of the growth rate depend on the anisotropy parameters. On increasing the value of the temperature anisotropy ratio of either plasma component, the observed growth rate increases. There is a considerable and contrasting effect of the presence of cold and warm ions on the growth rate of the Weibel instability in the plasma. The addition of cold ions stabilizes the instability and reduces the maximum growth rate values, while the addition of warm ions to the plasma increases the instability with a considerable decrease in the domain of instability. Our theoretical investigations of the effect of temperature anisotropy on the growth rate of the Weibel instability are in good agreement with the existing experimental results.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3