Calculating absorption and fluorescence spectra for chromophores in solution with ensemble Franck–Condon methods

Author:

Khanna Ajay1ORCID,Shedge Sapana V.1ORCID,Zuehlsdorff Tim J.2ORCID,Isborn Christine M.1ORCID

Affiliation:

1. Chemistry and Biochemistry, University of California Merced 1 , Merced, California 95343, USA

2. Department of Chemistry, Oregon State University 2 , Corvallis, Oregon 97331, USA

Abstract

Accurately modeling absorption and fluorescence spectra for molecules in solution poses a challenge due to the need to incorporate both vibronic and environmental effects, as well as the necessity of accurate excited state electronic structure calculations. Nuclear ensemble approaches capture explicit environmental effects, Franck–Condon methods capture vibronic effects, and recently introduced ensemble-Franck–Condon approaches combine the advantages of both methods. In this study, we present and analyze simulated absorption and fluorescence spectra generated with combined ensemble-Franck–Condon approaches for three chromophore–solvent systems and compare them to standard ensemble and Franck–Condon spectra, as well as to the experiment. Employing configurations obtained from ground and excited state ab initio molecular dynamics, three combined ensemble-Franck–Condon approaches are directly compared to each other to assess the accuracy and relative computational time. We find that the approach employing an average finite-temperature Franck–Condon line shape generates spectra nearly identical to the direct summation of an ensemble of Franck–Condon spectra at one-fourth of the computational cost. We analyze how the spectral simulation method, as well as the level of electronic structure theory, affects spectral line shapes and associated Stokes shifts for 7-nitrobenz-2-oxa-1,3-diazol-4-yl and Nile red in dimethyl sulfoxide and 7-methoxy coumarin-4-acetic acid in methanol. For the first time, our studies show the capability of combined ensemble-Franck–Condon methods for both absorption and fluorescence spectroscopy and provide a powerful tool for simulating linear optical spectra.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3