Real-time laser spot detection and tracking system based on parallel multi-target detection and determination algorithm

Author:

Cao Jia1ORCID,Chen Yang1ORCID,Yu De2,Xu Zheng1ORCID,Hu Xiaopin1,Liang Yongjing1ORCID,Pan Song1ORCID,Wu Dawei1ORCID

Affiliation:

1. State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics 1 , No. 29 Yudao Street, Nanjing 210016, China

2. Nanjing Panda Handa Technology Co. Ltd. 2 , Nanjing, Jiangsu 210014, China

Abstract

Laser spot detection and tracking play a critical role in laser techniques. However, traditional detection and tracking systems tend to be bulky and lack portability. Therefore, there is a growing emphasis on developing high-performance and miniaturized systems based on the field programmable gate array (FPGA). In this paper, a novel parallel multi-target detection and determination algorithm is proposed to address the issue of current FPGA-based systems’ ineffective detection of laser spots in complex environments. Our simulation results demonstrate that the algorithm can effectively detect laser spots in complex environments. It can process a frame with an 800 × 480 resolution in only 7.88 ms at a 50 MHz image processing frequency, which means it can process more than 100 f/s and meet the real-time detection requirements. Such excellent detection performance is challenging to achieve with central processing units and advanced RISC machine microprocessors. Then, the algorithm is further deployed on an FPGA to build a prototype laser spot detection and tracking system. Practical tests show that the system can achieve a spot detection accuracy of around 90% under different luminous intensities, indicating excellent robustness of the designed algorithm. Besides, with the use of a piezoelectric actuator, speedy and precise tracking of the laser spot is implemented. The characteristics of speedy response, self-latching in power off, and no electromagnetic interference of the piezoelectric actuator give the system tremendous advantages in developing high-precision wireless communication control technology, which further broadens the application of the proposed system.

Funder

National Science Foundation of China

Fund of Prospective Layout of Scientific Research for NUA

National Natural Science Foundation of China for Creative Research Groups

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3