Transformations that preserve the uniqueness of the differential form for Lorenz-like systems

Author:

Lainscsek Claudia12ORCID,Mendes Eduardo M. A. M.3ORCID,Salgado Gustavo H. O.4ORCID,Sejnowski Terrence J.125

Affiliation:

1. Computational Neurobiology Laboratory, The Salk Institute for Biological Studies 1 , 10010 North Torrey Pines Road, La Jolla, California 92037, USA

2. Institute for Neural Computation, University of California San Diego 2 , La Jolla, California 92093, USA

3. Laboratório de Modelagem, Análise e Controle de Sistemas Não Lineares, Universidade Federal de Minas Gerais 3 , Av. Antônio Carlos 6627, Belo Horizonte 31270-901, Minas Gerais, Brazil

4. Universidade Federal de Itajubá, Campus Itabira. Rua Irmã Ivone Drumond 4 , 200 Distrito Industrial II, Itabira 35903-087, Minas Gerais, Brazil

5. Division of Biological Sciences, University of California San Diego 5 , La Jolla, California 92093, USA

Abstract

Differential equations serve as models for many physical systems. But, are these equations unique? We prove here that when a 3D system of ordinary differential equations for a dynamical system is transformed to the jerk or differential form, the jerk form is preserved in relation to a given variable and, therefore, the transformed system shares the time series of that given variable with the original untransformed system. Multiple algebraically different systems of ordinary differential equations can share the same jerk form. They may also share the same time series of the transformed variable depending on the parameters of the jerk form. Here, we studied 17 algebraically different Lorenz-like systems that share the same functional jerk form. There are groups of these systems that share the jerk parameters and, therefore, also have the same time series of the transformed variable.

Funder

National Institute of Biomedical Imaging and Bioengineering

Ciência sem Fronteiras

Fundação de Amparo à Pesquisa do Estado de Minas Gerais

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference20 articles.

1. Nonuniqueness of global modeling and time scaling;Phys. Rev. E,2011

2. Geometry from a time series;Phys. Rev. Lett.,1980

3. Embedology;J. Stat. Phys.,1991

4. Equations of motion from a data series;Complex Syst.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3