Vertical-axis turbine performance enhancement with physics-informed blade pitch control. Basic principles and proof of concept with high-fidelity numerical simulation

Author:

Wisner Kai S.1ORCID,Yu Meilin1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Maryland, Baltimore County (UMBC) , Baltimore, Maryland 21250, USA

Abstract

In this study, we developed active physics-informed turbine blade pitch control methods to conquer the inconsistent energy harvesting efficiency challenges encountered by the vertical-axis turbines (VATs) technology. Specifically, individual turbine blades were pitched by actuators following commands from the physics-informed controllers, and the turbine performance improvements as a result of the blade pitch control mechanism and the associated flow physics were studied. The aim of the blade pitch control was to maintain constant effective angles of attack (AoAs) experienced by turbine blades through active blade pitch, and the constant AoA function was designed to facilitate control mechanism implementation into real-world VATs. To gain in-depth understanding of the capability of the control, flow physics was studied for different constant AoA control strategies across a wide range of tip speed ratios and wind speeds and was compared with that from the corresponding baselines without control, and that from the sinusoidal AoA control strategy. The comparison between the turbine performance with constant AoA control and that without control showed a consistent increase in the time-averaged net power coefficient, a measure of energy harvesting efficiency taking out of the actuator loss, ranging from 27.4% to 704.0% across a wide spread of wind speeds. The superior turbine performance with constant AoA control was largely attributed to blade dynamic stall management during the blade upstream and downstream cycles and the transition between the two cycles.

Publisher

AIP Publishing

Reference39 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3