Identity of the reversible hole traps in InP/ZnSe core/shell quantum dots

Author:

Kelley Anne Myers1ORCID,Cavanaugh Paul1,Sun Haochen1ORCID,Wang Xudong2,Bautista Maria J.2,Jen-La Plante Ilan2,Ippen Christian2,Kelley David F.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Road, Merced, California 95343, USA

2. Nanosys, Inc., 233 S. Hillview Dr., Milpitas, California 95035, USA

Abstract

Density functional theory calculations are combined with time-resolved photoluminescence experiments to identify the species responsible for the reversible trapping of holes following photoexcitation of InP/ZnSe/ZnS core/shell/shell quantum dots (QDs) having excess indium in the shell [P. Cavanaugh et al., J. Chem. Phys. 155, 244705 (2021)]. Several possible assignments are considered, and a substitutional indium adjacent to a zinc vacancy, In3+/VZn2−, is found to be the most likely. This assignment is consistent with the observation that trapping occurs only when the QD has excess indium and is supported by experiments showing that the addition of zinc oleate or acetate decreases the extent of trapping, presumably by filling some of the vacancy traps. We also show that the addition of alkyl carboxylic acids causes increased trapping, presumably by the creation of additional zinc vacancies. The calculations show that either a single In2+ ion or an In2+–In3+ dimer is much too easily oxidized to form the reversible traps observed experimentally, while In3+ is far too difficult to oxidize. Additional experimental data on InP/ZnSe/ZnS QDs synthesized in the absence of chloride demonstrates that the reversible traps are not associated with Cl. However, a zinc vacancy adjacent to a substitutional indium is calculated to have its highest occupied orbitals about 1 eV above the top of the valence band of bulk ZnSe, in the appropriate energy range to act as reversible traps for quantum confined holes in the InP valence band. The associated orbitals are predominantly composed of p orbitals on the Se atoms adjacent to the Zn vacancy.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3