Viscosity and porosity effects on tangential-discontinuity surface stability in 3D compressible media

Author:

Le Thi Thai12ORCID,Koch Thorsten12ORCID

Affiliation:

1. Chair of Software and Algorithms for Discrete Optimization, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

2. Applied Algorithmic Intelligence Methods Department, Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany

Abstract

The stability of a flow in porous media relates to the velocity rate of injecting and withdrawing natural gases inside porous storage. We, thus, aim to analyze the stability of flows in porous media to accelerate the energy transition process. This research examines a flow model of a tangential–velocity discontinuity with porosity and viscosity changes in a three-dimensional (3D) compressible medium because of a co-existence of different gases in storage. The fluids are assumed to move in a relative motion where the plane y = 0 is a tangential-velocity discontinuity surface. We obtain that the critical value of the Mach number to stabilize a tangential discontinuity surface of flows via porous media is smaller than the one of flows in a plane. The critical value of the Mach number M to stabilize a discontinuity surface of the 3D flow is different by a factor [Formula: see text] compared to the two-dimensional (2D) flow. Here, θ is the angle between velocity and wavenumber vectors. Our results also show that the flow model with viscosity and porosity effects is stable faster than those without these terms. Our analysis is done for both infinite and finite flows. The effect of solid walls along the flow direction could suppress the instability, i.e., the tangential–discontinuity surface is stabilized faster.

Funder

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3