Affiliation:
1. Institute of Applied Physics and Computational Mathematics, Beijing 100088, People’s Republic of China
Abstract
We consider the Cauchy problem for the compressible Navier–Stokes–Korteweg system in three dimensions. Under the assumption of the global existence of strong solutions to incompressible Navier–Stokes equations, we demonstrate that the compressible Navier–Stokes–Korteweg system admits a global unique strong solution without smallness restrictions on initial data when the Mach number is sufficiently small. Furthermore, we derive the uniform convergence of strong solutions for compressible Navier–Stokes–Korteweg equations toward those for incompressible Navier–Stokes equations as long as the solution of the limiting system exists.
Funder
National Natural Science Foundation of China
Subject
Mathematical Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献