Effect of higher-order interactions on chimera states in two populations of Kuramoto oscillators

Author:

Kar Rumi1ORCID,Yadav Akash1ORCID,Chandrasekar V. K.2ORCID,Senthilkumar D. V.1ORCID

Affiliation:

1. School of Physics, Indian Institute of Science Education and Research 1 , Thiruvananthapuram 695551, Kerala, India

2. Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University 2 , Thanjavur 613 401, Tamil Nadu, India

Abstract

We investigate the effect of the fraction of pairwise and higher-order interactions on the emergent dynamics of the two populations of globally coupled Kuramoto oscillators with phase-lag parameters. We find that the stable chimera exists between saddle-node and Hopf bifurcations, while the breathing chimera lives between Hopf and homoclinic bifurcations in the two-parameter phase diagrams. The higher-order interaction facilitates the onset of the bifurcation transitions at a much lower disparity between the inter- and intra-population coupling strengths. Furthermore, the higher-order interaction facilitates the spread of breathing chimera in a large region of the parameter space while suppressing the spread of the stable chimera. A low degree of heterogeneity among the phase-lag parameters promotes the spread of both stable chimera and breathing chimera to a large region of the parameter space for a large fraction of the higher-order coupling. In contrast, a large degree of heterogeneity is found to decrease the spread of both chimera states for a large fraction of the higher-order coupling. A global synchronized state is observed above a critical value of heterogeneity among the phase-lag parameters. We have deduced the low-dimensional evolution equations for the macroscopic order parameters using the Ott–Antonsen Ansatz. We have also deduced the analytical saddle-node and Hopf bifurcation curves from the evolution equations for the macroscopic order parameters and found them to match with the bifurcation curves obtained using the software XPPAUT and with the simulation results.

Funder

Science and Engineering Research Board

Indian Institute of Science Education and Research Thiruvananthapuram

DST-FIST Programme

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3