Finding the bulk viscosity of air from Rayleigh-Brillouin light scattering spectra

Author:

Bruno Domenico1ORCID,Frezzotti Aldo2ORCID,Jamali Seyed Hossein3ORCID,van de Water Willem4ORCID

Affiliation:

1. Istituto per la Scienza e Tecnologia dei Plasmi, Consiglio Nazionale delle Ricerche 1 , Via G. Amendola 122, 70125 Bari, Italy

2. Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano 2 , Via La Masa, 34, 20156 Milano, Italy

3. Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology 3 , Leeghwaterstraat 39, 2628CB Delft, The Netherlands

4. Laboratory for Aero and Hydrodynamics, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology 4 , Leeghwaterstraat 39, 2628CB Delft, The Netherlands

Abstract

Spectral line shape models can successfully reproduce experimental Rayleigh-Brillouin spectra, but they need knowledge about the bulk viscosity ηb. Light scattering involves GHz frequencies, but since ηb is only documented at low frequencies, ηb is usually left as a free parameter, which is determined by a fit of the model to an experimental spectrum. The question is whether models work so well because of this freedom. Moreover, for light scattering in air, spectral models view “air” as an effective molecule. We critically evaluate the use of ηb as a fit parameter by comparing ηb obtained from fits of the Tenti S6 model to the result of Direct Simulation Monte Carlo (DSMC) for a mixture of Nitrogen and Oxygen. These simulations are used to compute light scattering spectra, which are then compared to experiments. The DSMC simulation parameters are cross-checked with a molecular dynamics simulation based on intermolecular potentials. At large values of the uniformity parameter y, y ≈ 4, where the Brillouin contribution to spectra is large, fitted ηb are 20% larger than the ones from DSMC, while the quality of the simulated spectra is comparable to that of the Tenti S6 line shape model. At smaller y, the difference between fitted and simulated ηb can be as large as 100%. We hypothesize the breakdown of the bulk viscosity concept to be the cause of this fallacy.

Funder

Technische Universiteit Delft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3