Multi-step photon upconversion in quantum-dot-based solar cells with a double-heterointerface structure

Author:

Mahamu Hambalee1ORCID,Asahi Shigeo1ORCID,Kita Takashi1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University , 1-1 Rokkodai, Nada, Kobe 657-8501, Japan

Abstract

Photon upconversion (PU) is a process where an electron is excited from the valence band to the conduction band of a wide-gap semiconductor by the sequential absorption of two or more photons via real states. For example, two-step PU can generate additional photocurrent in the so-called intermediate-band solar cells. In this work, we consider two- and three-step processes; we study multi-step PU in a quantum dot (QD)-based single-junction solar cell with a double-heterointerface structure. The solar cell consists of three different absorber layers: Al0.7Ga0.3As, Al0.3Ga0.7As, and GaAs, which form two heterointerfaces. Just beneath each heterointerface, an InAs/GaAs QD layer was inserted. After band-to-band excitation, electrons accumulate at each heterointerface, and then, below-bandgap photons excite a certain fraction of these electrons above the barrier energy. The photoluminescence spectra of the InAs QDs reveal slightly different QD size distributions at the two heterointerfaces. We show that the external quantum efficiency is improved by additional irradiation with below-bandgap infrared photons, which suggests a multi-step PU process that involves the two heterointerfaces. The dependence of the photocurrent on the infrared excitation power density only shows a superlinear behavior when the GaAs layer is excited but the Al0.3Ga0.7As layer is not. These data demonstrate a multi-step PU process that consists of one intraband transition at each of the two heterointerfaces and one interband transition in GaAs.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3