Conditional cross-map-based technique: From pairwise dynamical causality to causal network reconstruction

Author:

Yang Liufei12ORCID,Lin Wei134ORCID,Leng Siyang15ORCID

Affiliation:

1. Research Institute of Intelligent Complex Systems, Fudan University 1 , Shanghai 200433, China

2. Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University 2 , Shanghai 200433, China

3. School of Mathematical Sciences and Shanghai Centre for Mathematical Sciences, Fudan University 3 , Shanghai 200433, China

4. Shanghai Artificial Intelligence Laboratory 4 , Shanghai 200232, China

5. Institute of AI and Robotics, Academy for Engineering and Technology, Fudan University 5 , Shanghai 200433, China

Abstract

Causality detection methods based on mutual cross mapping have been fruitfully developed and applied to data originating from nonlinear dynamical systems, where the causes and effects are non-separable. However, these pairwise methods still have shortcomings in discriminating typical network structures, including common drivers, indirect dependencies, and facing the curse of dimensionality, when they are stepping to causal network reconstruction. A few endeavors have been devoted to conquer these shortcomings. Here, we propose a novel method that could be regarded as one of these endeavors. Our method, named conditional cross-map-based technique, can eliminate third-party information and successfully detect direct dynamical causality, where the detection results can exactly be categorized into four standard normal forms by the designed criterion. To demonstrate the practical usefulness of our model-free, data-driven method, data generated from different representative models covering all kinds of network motifs and measured from real-world systems are investigated. Because correct identification of the direct causal links is essential to successful modeling, predicting, and controlling the underlying complex systems, our method does shed light on uncovering the inner working mechanisms of real-world systems only using the data experimentally obtained in a variety of disciplines.

Funder

Shanghai Municipal Education Commission

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Shanghai Municipal Science and Technology Major Project

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3