Laser-induced dynamic alignment of the HD molecule without the Born–Oppenheimer approximation

Author:

Adamowicz L.12ORCID,Kvaal S.13ORCID,Lasser C.14ORCID,Pedersen T. B.13ORCID

Affiliation:

1. Centre for Advanced Study at the Norwegian Academy of Science and Letters, Drammensveien 78, N-0271 Oslo, Norway

2. Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA

3. Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway

4. Zentrum Mathematik, Technische Universität München, München, Germany

Abstract

Laser-induced molecular alignment is well understood within the framework of the Born–Oppenheimer (BO) approximation. Without the BO approximation, however, the concept of molecular structure is lost, making it hard to precisely define alignment. In this work, we demonstrate the emergence of alignment from the first-ever non-BO quantum dynamics simulations, using the HD molecule exposed to ultrashort laser pulses as a few-body test case. We extract the degree of alignment from the non-BO wave function by means of an operator expressed in terms of pseudo-proton coordinates that mimics the BO-based definition of alignment. The only essential approximation, in addition to the semiclassical electric-dipole approximation for the matter–field interaction, is the choice of time-independent explicitly correlated Gaussian basis functions. We use a variational, electric-field-dependent basis-set construction procedure, which allows us to keep the basis-set dimension low while capturing the main effects of electric polarization on the nuclear and electronic degrees of freedom. The basis-set construction procedure is validated by comparing with virtually exact grid-based simulations for two one-dimensional model systems: laser-driven electron dynamics in a soft attractive Coulomb potential and nuclear rovibrational dynamics in a Morse potential.

Funder

Norges Forskningsråd

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3