Analytic structure of the associated Legendre functions of the second kind

Author:

Liu Tianye1ORCID,Norman Daniel A.1ORCID,Mannheim Philip D.1ORCID

Affiliation:

1. Department of Physics, University of Connecticut , Storrs, Connecticut 06269, USA

Abstract

We consider the complex ν plane structure of the associated Legendre functions of the second kind Qν−1/2−K(cosh⁡ρ). We find that for any noninteger value of K the Qν−1/2−K(cosh⁡ρ) have an infinite number of poles in the complex ν plane, but for any negative integer K there are no poles at all. For K = 0 or any positive integer K there is only a finite number of poles, with there only being one single pole (at ν = 0) when K = 0. This pattern is analogous to the pattern of exceptional points that appear in a wide variety of physical contexts. However, while theories with exceptional points usually lose a finite number of degrees of freedom at the exceptional points, the Qν−1/2−K(cosh⁡ρ) lose an infinite number of poles whenever K is integer. Moreover, while theories with exceptional points usually have a finite number of such exceptional points, the Qν−1/2−K(cosh⁡ρ) possess an infinite number of points (all integer K) at which they lose degrees of freedom. Other than in the PT-symmetry Jordan-block case, exceptional points usually occur at complex values of parameters. While not being Jordan-block exceptional points themselves, the poles associated with the Qν−1/2−K(cosh⁡ρ) nonetheless occur at real values of K.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3