Advanced fuel fusion, phase space engineering, and structure-preserving geometric algorithms

Author:

Qin Hong12ORCID

Affiliation:

1. Princeton Plasma Physics Laboratory, Princeton University , Princeton, New Jersey 08540, USA and , Princeton, New Jersey 08540, USA

2. Department of Astrophysical Sciences, Princeton University , Princeton, New Jersey 08540, USA and , Princeton, New Jersey 08540, USA

Abstract

Non-thermal advanced fuel fusion trades the requirement of a large amount of recirculating tritium in the system for that of large recirculating power. Phase space engineering technologies utilizing externally injected electromagnetic fields can be applied to meet the challenge of maintaining non-thermal particle distributions at a reasonable cost. The physical processes of the phase space engineering are studied from a theoretical and algorithmic perspective. It is emphasized that the operational space of phase space engineering is limited by the underpinning symplectic dynamics of charged particles. The phase space incompressibility according to the Liouville theorem is just one of many constraints, and Gromov's non-squeezing theorem determines the minimum footprint of the charged particles on every conjugate phase space plane. In this sense and level of sophistication, the mathematical abstraction of phase space engineering is symplectic topology. To simulate the processes of phase space engineering, such as the Maxwell demon and electromagnetic energy extraction, and to accurately calculate the minimum footprints of charged particles, recently developed structure-preserving geometric algorithms can be used. The family of algorithms conserves exactly, on discretized spacetime, symplecticity and thus incompressibility, non-squeezability, and symplectic capacities. The algorithms apply to the dynamics of charged particles under the influence of external electromagnetic fields as well as the charged particle–electromagnetic field system governed by the Vlasov–Maxwell equations.

Funder

Princeton Plasma Physics Laboratory

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3