New physical insights into the supporting subspace factorization of XMS-CASPT2 and generalization to multiple spin states via spin-free formulation

Author:

Song Chenchen1ORCID

Affiliation:

1. Department of Chemistry, University of California Davis , 1 Shields Ave., Davis, California 95616, USA

Abstract

This paper introduces a spin-free formulation of the supporting subspace factorization [C. Song and T. J. Martínez, J. Chem. Phys. 149, 044108 (2018)], enabling a reduction in the computational scaling of the extended multi-state complete active space second-order perturbation (XMS-CASPT2) method for arbitrary spins. Compared to the original formulation that is defined in the spin orbitals and is limited to singlet states, the spin-free formulation in this work treats different spin states equivalently, thus naturally generalizing the idea beyond singlet states. In addition, we will present a new way of deriving the supporting subspace factorization with the purpose of understanding its physical interpretation. In this new derivation, we separate the sources that make CASPT2 difficult into the “same-site interactions” and “inter-site interactions.” We will first show how the Kronecker sum can be used to remove the same-site interactions in the absence of inter-site interactions, leading to MP2 energy in dressed orbitals. We will then show how the inter-site interactions can be exactly recovered using Löwdin partition, where the supporting subspace concept will naturally arise. The new spin-free formulation maintains the main advantage of the supporting subspace factorization, i.e., allowing XMS-CASPT2 energies to be computed using highly optimized MP2 energy codes and Fock build codes, thus reducing the scaling of XMS-CASPT2 to the same scaling as MP2. We will present and discuss results that benchmark the accuracy and performance of the new method. To demonstrate how the new method can be useful in studying real photochemical systems, the supporting subspace XMS-CASPT2 is applied to a photoreaction sensitive to magnetic field effects. The new spin-free formulation makes it possible to calculate the doublet and quartet states required in this particular photoreaction mechanism.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3